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This paper is concerned with the #exural vibration analysis of the hard disk drive (HDD)
spindle system by means of the "nite element method. In contrast to previous research, every
system component is here analytically modelled taking into account its structural #exibility
and also the centrifugal e!ect particularly on the disk. To prove the e!ectiveness and
accuracy of the formulated models, commercial HDD systems with two and three identical
disks are selected as examples. Then their major natural modes are computed with only
a small number of element meshes as the shaft rotational speed is varied, and subsequently
compared with the existing numerical results obtained using other methods and newly
acquired experimental ones. Based on such a series of studies, the proposed method can be
concluded as a very promising tool for the design of HDDs and various other high-
performance computer disk drives such as #oppy disk drives, CD ROM drives, and their
variations having spindle mechanisms similar to those of HDDs.
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1. INTRODUCTION

The hard disk drive (HDD) is the most popular and has the largest capacity of all kinds of
contemporary, auxiliary memory devices for personal computers. Nowadays, its spindle
system consists of a spindle shaft (or a hub), stacked disks of the same dimension, and two
ball bearings as illustrated in Figure 1. It is obvious that as the number of hard disks
increases, so does the HDD data storage capacity. However, from the viewpoint of cost, it is
known to be more economical to maximize the data density of each disk rather than the
total number of multiple disks. Thus, each disk is lately being required to store more than
two Giga bytes of digital data, which in turn means that the vibrational magnitude of the
uncontrollable, non-repeatable runout on a track should be limited to within 0)1 lm to
prevent the so-called misregistration of the magnetic heads during the track-following servo
process. Besides, for fast data access, the disks in some HDDs tend to rotate at as high
a speed as 10 000 rpm.

Such a circumstance requires that for precision analysis the hard disks not be treated as
rigid any longer, and more appropriate tools for HDD spindle vibration analysis are in need
than ever before. As the desired feature of such tools, the capability of analyzing coupled as
well as uncoupled vibration modes can be speci"ed above all.

However, previous research work in the area of rotor vibrations was mostly done by
assuming either the shaft or the disk to be rigid [1}4]. Meanwhile, some other work was
carried out by relaxing such assumption so as to reveal the elastic, coupled vibrations
between the shaft and the disks [5}7]. But, even such work made use of the simple
Rayleigh}Ritz method [8]. In those respects, both approaches inevitably su!er from
0022-460X/00/240601#16 $35.00/0 ( 2000 Academic Press



Figure 1. Hard disk drive spindle system.
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computational inaccuracy and the limited capability of analyzing higher, coupled
vibrational modes. This becomes more serious particularly in the case of actual HDD
spindle systems with hubs made of rather complex shapes and many di!erent materials.

Hence, in this work every system component is analytically modelled taking into account
its structural #exibility and also the centrifugal e!ect particularly on the disk. In the sequel,
such "nite element models are assembled and applied to the commercial HDDs as examples
to prove the e!ectiveness and accuracy of the proposed approached based on the
experimental results. On the other hand, since the most critical factor on which the
aforementioned storage density enhancement depends is the transverse, #exural vibrations
of the spindle, they are the only matter of interest here as far as the spindle is concerned.

2. ELEMENT EQUATIONS OF MOTION

In this paper, the equations of motion for each element are derived with due
considerations of the centrifugal and Coriolis forces caused by the rotational motion. To
this end, throughout the procedure it is assumed that the system is isotropic, and the
associated de#ections are all elastic and small enough.

To describe an orientation in the 3-D space, a set of Euler angles involved in the
successive rotations about the X-, >-, and Z-axis are de"ned to be (Xt, hm , hg) with the
following co-ordinate frames used:

OX
0
>
0
Z

0
*"xed inertial co-ordinate frame: M0N,

OX
1
>
1
Z

1
*co-ordinate frame rotating about X

0
-axis at a constant speed X with respect to

M0N : M1N,
OX

2
>
2
Z

2
*co-ordinate frame rotating hg about the Z-axis of the intermediate frame which

rotates hm about the >
1
-axis with respect to M1N : M2N.

Among those, frame M2N corresponds to the shaft-"xed frame undergoing the shaft's
elastic rotations as well. Since all the elastic de#ections of the shaft and the disks are to be
expressed, respectively, in the rotating frames M1N and M2N, the resulting equations of motion
will be relatively simple and time-invariant without the appearance of the rotation angle Xt,
which is the product of the rotational speed and the lapse time t.

In such a case, the absolute angular velocity of a body in space can be graphically
obtained. Retaining its terms only up to the second order,

2(0u
2
)"[XM1!(h2g#h2m )/2N#hghQ m , hQ m!Xhg , hQ g#Xhm]T, (1)
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where the leading superscript outside the parentheses denotes the frame, along whose axes
the corresponding vector is expressed componentwise, while the other superscript inside
represents the reference frame where the vector quantity of the body or the frame denoted
by the trailing subscript is observed. Henceforth, if the two superscripts are the same, both
the parentheses and one of those will be omitted.

On the other hand, when c and s abbreviate, respectively, the cosine and sine functions,
the rotation matrix between the de"ned co-ordinate frames are as follows:

1R
0
"

1 0 0

0 c(Xt) s (Xt)

0 !s(Xt) c (Xt)

, 2R
1
"

1 hg !hm
!hg 1 0

hm 0 1

. (2a, b)

Whenever necessary, other rotation matrices can be readily obtained using its
concatenation arithmetics or the orthonormality property.

2.1. SHAFT (HUBS, SPACERS, AND CLAMPS)

Whether hollow or now, a shaft representing the hub, the spacer, or the clamp is
subdivided into several "nite elements to be modelled, one of which is shown in Figure 2.
Until now, there have existed various beam models for transverse, bending kinematics.
Among them, taking into account the rotary inertia arising necessarily from the thick and
short shape of the shaft at hand, the Rayleigh's beam theory is to be adopted.

In that case, the position vector of the typical point S on a cross-section in Figure 2 is

w
6 S
"x

6 S
#u

6 S
#r

6 S
, (3a)

from the origin O after the de#ection takes place. If the above equation is rewritten
componentwise in a matrix form,

0w
S
"0R

1
(1x

s
#1u

s
)#0R

2
2r

S
, (3b)

where 1x
D
"[x 0 0]T denotes the nominal position vector of the point S along the shaft,

1u
s
"[0 v(x, t) w(x, t)]T the lateral de#ection vector of the shaft centerline, and
Figure 2. Finite shaft element.
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2r
s
"[0 rch rsh]T the nominal position vector of the point S on the cross-section, r and

h being, respectively, the radial and circumferential co-ordinates.
Time di!erentiation of equation (3b) in frame M0N leads to the absolute velocity vector

0w5
S
"0uJ

1
0R

1
(1x

S
#1u

s
)#0R

1
1u5

S
#0uJ

2
0R

2
2r

s
, (4)

where &&&'' stands for the 3]3 skew-symmetric matrix made up of the corresponding
vector elements to replace the vector cross product. It is noteworthy that the last term in the
above equation relates to the rotary inertia e!ect from the beam cross-section, and could be
ignored if the classical beam theory were applied.

On the other hand, discretizing the distributed variables in space according to the
assumed modes method [8] results in equations of motion in a desirable form, i.e., ordinary
di!erential equations. Hence, when the #exural, elastic de#ections are assumed as

v (x, t)"uT
S
(x)q

y
(t), w (x, t)"uT

s
(x)q

z
(t), (5a, b)

the following also hold true according to the beam kinematics:

hm(x, t)"!/T
S
(x)q

z
(t), hg(x, t)"/T

S
(x)q

y
(t), (5c, d)

in which /
S
(x)"Lu

S
(x)/Lx.

In consideration of equations (4) and (5), the kinetic energy can be obtained as
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(6)

where Ge
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x
(o
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S
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S
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S
/2) dx, Me
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S
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S
/2) dx, and o

S
,

A
S
, and I

Sp
designate, respectively, the mass density, the cross-sectional area, and the polar

mass moment of inertia per unit length. Meanwhile, the potential energy is stored in the
shaft when it is bent. Hence, if the bending rigidity of the shaft is E

S
I
S
, and the sti!ness

matrix Ke
S
":

x
E

S
I
S
uA
S
uAT

S
dx, then the potential energy will amount to

<e
S
"1

2
(qT

y
Ke

S
q
y
#qT

z
Ke

S
q
z
). (7)

In addition, when 2f"[0 f
y

f
z
]T denotes the external force including the centrifugal force

originating from the unbalance mass, the non-conservative virtual work is expressed as

d=M
S
"P

D

f
y
uT
S

dD dq
y
#P

D

f
z
uT
S
dD dq

z
. (8)

When put into the Lagrange equation [8], the energies in equations (6)}(8) yield the
equations of motion for the shaft element as follows:
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dD. (9a)

In the preceding equation, if the real generalized co-ordinates and force vectors are
substituted with the complex ones such that z

S
"q

y
#jq

z
and Q

S
"f

y
#j f

z
, the number of



Figure 3. Annular disk element.
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constituent scalar equations can be halved so that

Me
S
zK
S
#jX(Me

S
#Ge

S
)z5

S
#(Ke

S
!X2Ge

S
)z

S
"P

D

Q
S
u
S
dD, (9b)

where j"J!1.
Consequently, the "nite shaft element has two complex degrees of freedom at each end as

depicted in Figure 2.

2.2. DISK (HARD DISKS)

It is known that the #exural spindle vibration may cause fatal errors during the data
read/write process in HDDs, and only the out-of-plane vibration of the disk is coupled with
it. Therefore, in this paper, the vibration of the disk in the direction perpendicular to the
disk plane is to be exclusively investigated. Although the hard disk itself has the shape of an
annulus, it is subdivided into concentric annular disk elements for precision analysis.

One of them is typically illustrated in Figure 3, where the displacement vector from the
origin O on the element is

0w
D
"0R

1
1u

P
#0R

2
(2r

D
#2u

D
) (10)

in a deformed state. In the above equation, 1u
P
"[x

D
v
D

w
D
]T represents the position

vector of the element center located at x
D

along the shaft, 2r
D
"[0 rch rsh]T the nominal

position vector of the point D on the disk element, and 2u
D
"[u

D
(r, h, t) 0 0]T the elastic

disk de#ection out of the element plane.
As in equation (5), the distributed variable u

D
(r, h, t) needs to be variable separated. In

doing so, note that it is a periodic function with a period of 2n in the circumferential
direction. Hence, it can be expanded into a Fourier in"nite series in that direction. However,
since only the disk modes with one nodal diameter are related to the coupled vibrations [5],
the fundamental harmonic terms should be all terms not to be truncated in the series to
analyze those vibrations. In such a context, introducing the function of radial position u

D
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and the time-dependent generalized co-ordinates q
Dc

and q
Ds

as coe$cients, u
D

can be
separated into

u
D
(r, h, t)"uT

D
(r)cnhq

Dc
(t)#uT

D
(r) snhq

Ds
(t), n"1. (11)

Inserting into the following formula the time derivative of equation (10) combined with
equation (11), one can get the kinetic energy expression for the annular disk element, which
is detailed in Appendix A:
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0
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r dr. For reference,

I
Dp
"2I

Dy
in the case of thin circular plates.

On the other hand, the potential energy for the disk element stems not only from the
bending deformation but also the initial stress strain, which is in the present case associated
with the centrifugal force due to rotation. Accordingly,

<e
D
"1

2
MqT

Dc
(K

De
#K

Dg)qDc
#qT

Ds
(K

De
#K

Dg)qDs
N (13)

in which K
De

denotes the generic sti!ness matrix depending on the plate's bending rigidity
D

E
and the Poisson ratio l as in Appendix B, E

D
being the Young's modulus. Moreover,

K
Dg is called the geometric sti!ness matrix taking the form in Appendix B due to the initial

stress strain, where p
r

and ph mean the normal stress components in the disk element,
respectively, in the radial and circumferential directions. Provided the disk is thin enough
and the stresses are axisymmetrically distributed, the shear stress components in the plane
can be neglected such that q

rh"qhr"0 and the aforementioned normal stresses are
obtained as proportional to X2 [5, 9]. Therefore, if the rotational speed goes far beyond the
regular operating range, the geometric sti!ness will become more and more dominant so
that the disk may behave as a rigid body.

Just as in the shaft element, the distributed forces in the disk element plane including the
centrifugal forces may cause the non-conservative virtual work
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where a distinction lies in that u
S
(x

D
) above is the shaft shape function evaluated at the

disk-mounted position.
When equations (12)}(14) are put into the Lagrange equation with a complex generalized

co-ordinate and a force introduced as z
D
"q

Dc
#jq

Ds
and Q

D
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y
#j f

z
, the equations of

motion for the disk element are derived as
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2.3. BEARING

The bearings in HDD are of the deep groove type so as to support the spindle both in the
radial and longitudinal directions. For the present purpose, however, they are merely
modelled to oppose its transverse motion as a massless spring and damper. Under such an
assumption, the kinetic energy vanishes, and the potential energy equals the negated work
done by the spring force, i.e.,

<
B
"!P 1fT

c
d1u

B
, (16a)

where 1f
c
"!k

B
1u

B
and 1u

B
"[0 v

B
w

B
]T, respectively, refer to the spring force and the

elastic shaft displacement at the bearing location x
B

along the shaft, and k
B

the sti!ness
coe$cient for the isotropic bearings. Going through some algebra, one can rearrange the
above equation as
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z
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On the other hand, the total non-conservative force including the damping force, say 1f
nc

,
contributes to the virtual work

d=M
B
"1f T

nc
d1u

B
. (17a)

When the element damping matrix C"diag [0, c
B
, c

B
], and the external bearing force

1Q"[0, f
By

, f
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]T, it holds that 1f
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"!C1R

0
0u5

B
#1Q. As a result, the above equation

concerning the virtual work leads to
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)q5
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B
)q

y
)NuT
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(x

B
)dq

z
. (17b)

By inserting equations (16b) and (17b) into the Lagrange equation, the equations of
motion for the bearing element can be obtained as

c
B
W

S
(x

B
)z5

S
#(k

B
#jc

B
X)W

S
(x

B
)z

S
"u

S
(x

B
)Q

B
, (18)

where W
S
(x

B
)"u

S
(x

B
)uT

S
(x

B
), and Q

B
"f

By
#j f

Bz
. On the other hand, if equation (18) is

used as it is, the bearing element will have as many as four complex degrees of freedom
(d.o.f.s) like the shaft element does. However, in consideration of its actual motions
occurring only in the translational manner at a speci"c node, it is clear that there remains
a necessity to further re"ne equation (18).

3. SPATIAL DISCRETIZATION AND SHAPE FUNCTIONS

Since all the elements treated in this paper experience only the bending deformation, they
belong to the fourth order eigenvalue problem. Hence, a set of the Hermite cubic
polynomials [10] is appropriate as the shape functions for the spatial discretization.

In other words, for the shaft element one can use u
S
(x)"[u

S1
(x) u

S2
(x)

u
S3

(x) u
S4

(x)]T, where u
Si

(i"1, 2, 3, 4) represents the following function of the
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non-dimensionalized local co-ordinate m"x/l;

u
S1

(m)"1!3m2#2m3, u
S2

(m)"lm(m!1)2, u
S3

(m)"3m2!2m3, u
S4

(m)"lm2 (m!1).

(19)

Therefore, when the generalized co-ordinates are de"ned to be q
y
(t)"[q

1
q
4

q
5

q
8
]T and

q
z
(t)"[q

2
q
3

q
6

q
7
]T in terms of the nodal displacements in Figure 2, certain physical

relationships hold for the elastic displacements at the boundary:

q
1
"v(0, t), q

2
"w (0, t), q

3
"w@ (0, t), q

4
"v @(0, t),

q
5
"v(l, t), q

6
"w (l, t), q

7
"w@ (l, t), q

8
"v @(l, t).

Likewise, for equation (11) regarding the disk element, the admissible functions and the
generalized co-ordinates are de"ned, respectively, as u

D
(r)"[u

D1
u
D2

u
D3

u
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]T and
q
Dt

(t)"[q
Di1

q
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]T, where i"c or s. However, u
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di!ers from u
S

in that its
local independent variable is m"(r!R

i
)/(R

0
!R

i
), and the element width (R

0
!R

i
) takes

the place of the shaft element length l. With such shape functions applied, each coe$cient
matrix in the element equations of motion can be constructed in a closed form. But, for the
sake of brevity, further details are to be omitted.

Up to this point, in terms of the total number of complex d.o.f.'s, the shaft element has
four, the disk element eight, and lastly the bearing element four of them. However, except for
the shaft element, there exists undesirable redundancy.

As for the disk element, to describe its actual motion a total of three nodes will su$ce
provided that the "rst of those is situated at the disk center coincident with the speci"c shaft
node, the second at the inner circumference, and the third at the outer circumference. Hence,
allocating two complex d.o.f.'s to each node adds up to only six d.o.f.'s in total. Discarding
extra null elements in consideration of equation (19) at the "rst nodal points leads to
u
S
(x

D
)"[1 0]T and u

S
(x

D
)"[0 1]T relevant to equation (15). These in turn reduce the

size of all the coe$cient matrices down to 6]6, and also that of the generalized co-ordinate
to 6]1. In the disk element assemblage procedure, care should be taken regarding the
aspect that for the innermost disk element, no d.o.f.'s exist at the second node due to
the clamped boundary condition with the shaft. This sort of disk element is referred to as
the shaft-disk transition element in reference [4].

On the other hand, equation (18) for the bearing element has the same kind of problem as
addressed beforehand. Since only a single complex d.o.f. is required in actuality to describe
the bearing's translational motion, the extra ones must be eliminated. If the bearing location
x
B
coincides with a shaft node, it will turn out that u

S
(x

B
)"1 discarding the other three null

elements. In such a case, if either the "rst or the third element of z
S
vector in equation (18) is

only chosen to be renamed as z
B
, equation (18) can be simpli"ed as a scalar equation:

c
B
zR
B
#(k

B
#jc

B
X) z

B
"Q

B
. (20)

4. COMPUTATIONAL AND EXPERIMENTAL RESULTS

Those developed "nite element models are all computer programmed. Hence, given any
particular rotor system con"guration, overall equations of motion can be promptly
assembled using the connectivity matrix method [10], and recast into a state-space form
from which the standard eigenvalue problem is to be solved.



Figure 4. Natural frequencies versus the no. of disk meshes.
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4.1. CONVERGENCE CHARACTERISTICS

Before being applied to real problems, the formulated "nite element models are evaluated
a priori in terms of the convergence characteristics. To this end, the coupled lowest four
modes are investigated for a uniform rotor model which carries a thin disk at the midpoint
of a slender shaft. The shaft is assumed to be simply supported at both extreme ends. Then,
each system component is subdivided in order for the element meshes to have equal lengths
or widths.

First, with the total number of shaft element meshes "xed as six, disk element meshes are
increased from one to six. In such a case, as can be seen in Figure 4, the second and the third
modes are relatively more sensitive to the number of disk meshes than the other modes until
they almost converge. This phenomenon is closely tied with the mode shapes since the disk
deforms considerably not in the "rst and fourth modes but in the other two modes. Next,
conversely the number of shaft meshes is multiplied while that of disk meshes continues to
equal six. In this case, Figure 5 shows that due to the same reason, the third and fourth
modes are more sensitive but rapidly converge as the shaft meshes increases.

Based on the above observations, it can be justi"ed to use "ve and two element meshes,
respectively, for a hard disk and a uniform section of the spindle shaft.

4.2. NATURAL MODES

In order to demonstrate the accuracy of the proposed models, the commercial HDD
spindle system with duplicate disks in reference [5] is taken as the "rst example although it
was originally idealized to some extent. With exactly the same data input for the sizes and
the material constants, its natural modal characteristics are computed employing only "ve
element meshes equally for both the whole spindle shaft and each disk for enough
convergency, while the shaft rotational speed is varied. All the major #exural modes are
investigated including the uncoupled disk modes, and compared with the existing, plotted
results obtained using the Rayleigh}Ritz method in conjunction with as many as 40
admissible functions in total [5].

In Figure 6, the natural frequencies up to the six-coupled mode are presented in the
inertial frame M0N, and also in Figure 7 the corresponding mode shapes in non-rotating state
are exhibited. Note here that all the Campbell diagrams in this paper are plotted with



Figure 5. Natural frequencies versus the no. of shaft meshes.

Figure 6. Coupled modes (2 disks).

Figure 7. Mode shapes (2 disks): from the top, "rst to sixth mode.
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Figure 8. Uncoupled disk modes (2 disks).
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respect to that frame for comparison purposes with the experimental results. They are in
good agreement with the existing results up to the fourth mode whether or not the whirl
directions are forward (F) or backward (B). However, in the "fth mode, a simultaneous
rocking motion of the shaft is more evidently discovered besides the translational vibration
to the side. Also, the sixth mode is additionally sought similar to the third mode except for
another nodal circle. According to the terms in reference [3], such modes as the second and
fourth modes can be classi"ed as the balanced modes as opposed to the other four
unbalanced modes.

On the other hand, letting nO1 unlike in equation (11) is equivalent to considering the
constant or the higher harmonic terms in the Fourier series expansion. It enables the
uncoupled disk vibration modes to be computed as in Figure 8, where the "rst and the
second numerals in the parentheses indicate, respectively, the number of nodal diameters
and nodal circles each mode shape possesses. As far as all the lower modes of less than "ve
diametral and two circular nodes in reference [5] are concerned, the values look very close.

As a second example, the trendier HDD system is selected with three identical disks
mounted on a rather complex-shaped spindle as in Figure 1, where r

1
"6)5 mm,

r
2
"15)0 mm, r

3
"16)5 mm, r

4
"47)5 mm, h

1
"2)0 mm, h

2
"2)4 mm, h

3
"6)0 mm,

h"9)6 mm, S"15)0 mm, b
1
"4)0 mm, b

2
"12)9, and h

D
"0)8 mm. On the other hand,

the relevant material properties are such that E
S
"E

D
"7)2]1010 N/m2, l"0)3,

o
S
"o

D
"2750 kg/m3, k

B
"3)0]1010 N/m, and c

B
"100 Ns/m. However, any damping

inherent in the system including c
B

is to be neglected in computations. Besides, the inner
radius of the disk, r

3
, is in fact set at 15 mm, instead of 16)5 mm, because the e!ective inner

radius tends to be smaller than the spacer's outer radius when disks are su$ciently and
literally clamped.

Its modal characteristics are studied with the shaft element meshes increased up to 13 for
the hub part including the spindle, the spacers in between disks, and the clamp atop as the
geometry dictates. As a result, the coupled vibrational modes take the natural frequencies
and the mode shapes as in Figures 9 and 10, respectively, whereas the uncoupled disk modes
are computed as in Figure 11. Just as with the "rst and the third coupled modes of the
preceding two-disked example, the "rst and the fourth coupled modes here are 1803 out of
phase in view of the disk's de#ections relative to the spindle. Such modes are the typical ones
which cannot be discriminated in case the spindle or the disks are individually analyzed.



Figure 9. Coupled modes (3 disks).

Figure 10. Mode shapes (3 disks): from the top, "rst to sixth mode.

Figure 11. Uncoupled disk modes (3 disks).
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Comparisons between Figures 7 and 9 allow one to predict that in the same frequency
range, more coupled modes will appear as the number of stacked disks increases, raising the
chances of resonance at a speci"c rotational speed.

In principle, the uncoupled disk modal characteristics should be identical as long as the
hard disks are of the same speci"cations. However, the natural frequencies in Figure 11 are



Figure 12. FRF at 0 rpm (3 disks).
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generally lower than those in Figure 8. This is because the inner radius of the disk is tuned to
be 15 mm in the computation for three-disked HDD other than 17 mm, the value used in
the case of the two-disked HDD merely to be consistent with reference [5] where the
concept of e!ective inner radius is overlooked.

4.3. FREQUENCY RESPONSES

Finally, the frequency response functions (FRFs) are experimentally found as well by the
impact test to con"rm the natural frequencies and identify the magnitudes of the concerned
modes in the HDD sample with triple disks. The experiments are performed with the HDD
cover screwed on the "xed shaft as in normal usage.

When the spindle is stationary, the FRF in Figure 12 is obtained by striking the top disk
near the rim with a pencil-type impulse hammer and measuring output velocity signal via
a laser doppler vibrometer pointed at the vicinity. The "gure shows peaks of the lowest two
coupled disk modes and seven uncoupled disk modes such as (0, 0), (2, 0)}(7, 0) in the
increasing order of nodal diameters with no nodal circles. Compared to such a wide
frequency range, the second coupled mode is so closely spaced with the (0, 0) mode as to be
hardly discernible from it. Furthermore, it is self-evident that the higher modes missing
within the frequency range of Figure 12 are di$cult to detect due to their small magnitudes.
Table 1 shows that the mean error is about 1)5% between the actual peak frequencies and
the computed ones enlisted from values in Figures 9 and 11.

On the other hand, the FRF during rotation at a speed of 7200 rpm is obtained as in
Figure 13 in the same fashion. Aside from the peaks including the "rst two, most modes in
Figure 12 consistently appear. As predicted, the forward and backward whirls split in the
modes subject to the gyro e!ects. In Table 2, the experimental natural frequencies are found
to deviate about 1)9% from the computed ones on average.

It is also remarkable that at the integer multiple frequencies of the rotational speed such
as 120 and 240 Hz, extra peaks are observed resulting from the disk surface waviness or the
assembly tolerance in the HDD system. In order to indicate the mobility magnitude at each
mode, the ordinate readings of Figures 12 and 13 are marked in the decibel values of
mm/Ns.

As the principal source of errors between the computational and the experimental results,
ignorance of the following factors can be pointed out in the case of coupled modes;
longitudinal and axial vibrations, the small protruding hub portion in contact with the



TABLE 1

Natural frequencies at 0 rpm

No. Mode shape Comp. (Hz) Exp. (Hz) Error (%)

1 1st coupled 489 488 0)2
2 2nd coupled 602 608 0)98
3 (0,0) 615 608 1)15
4 (2,0) 731 712 1)1
5 (3,0) 1188 1168 1)6
6 (4,0) 1955 1920 2)0
7 (5,0) 2963 2920 1.4
8 (6,0) 4182 4120 1)5
9 (7,0) 5598 5512 1)5

Figure 13. FRF at 7200 rpm (3 disks).

TABLE 2

Natural frequencies at 7200 rpm

No. Mode shape Comp. (Hz) Exp. (Hz) Error (%)

1 1st coupled, B 385 392 1)78
2 (2,0) B 518 496 4)2
3 1st coupled, F 621 616 0)8
4 (3,0) B 857 832 2)9
5 (2,0) F 989 968 2)1
6 (4,0) B 1503 1472 2)0
7 (3,0) F 1563 1536 1)7
8 (5,0) B 2392 2352 1)6
9 (4,0) F 2455 2408 1)9

10 (6,0) B 3491 3432 1)7
11 (5,0) F 3570 3520 1)4
12 (6,0) F 4905 4840 1)3
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lower bearing, and its associated bearing location discrepancy. On the other hand, in the
case of uncoupled disk modes, primary errors depend on how accurate the disk's e!ective
inner radius dimension is. Moreover, it should be noted that in the computations of both
coupled and uncoupled modes, any damping is neglected. Therefore, it is unavoidable that
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the natural frequencies are evaluated to be slightly higher than they are even if the mode
shapes having nothing to do with it.

5. CONCLUSIONS

Finite element models for HDD spindle systems were formulated taking into account the
structural #exibility of every component and the centrifugal e!ect particularly on disks. By
means of them, their coupled #exural vibrations as well as the uncoupled ones could be
computed up to fairly high modes using only a few element meshes. Those results were
con"rmed to be e!ective and accurate enough by experiments.

It is also observed that the more disks are stacked in a HDD system, the more coupled
vibrational modes appear within the given low-frequency range even if the uncoupled disk
nodes remain unaltered. This implies more chances of resonance in proportion. The
proposed approach may signi"cantly enhance the design capability for the high-speed and
high density HDDs and the likes to come.
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APPENDIX A: KINETIC ENERGY OF THE ANNULAR DISK ELEMENT
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APPENDIX B: STIFFNESS MATRICES OF THE ANNULAR DISK ELEMENT
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